Algebra I

COURSE OUTLINE				
Unit One	Patterns	18 Days		
	Representing Patterns			
	Patterns with Integers			
	Arithmetic Sequences			
	Geometric Sequences			
	Patterns with Fractals			
Unit Two	Linear Equations and Inequalities	23 Days		
	Understanding Algebraic Expressions			
	One-Step and Two-Step Linear Equations			
	Combining Like Terms to Solve Equations			
	Solving Equations Using the Distributive Property			
	Formulas and Literal Equations			
	Linear Inequalities			
Unit Three	Functions	17 Days		
	Relations and Functions			
	What is a Function?			
	Function Notation and Evaluating Functions			
	Multiple Representations and Applications of Functions			
Unit Four	Linear Functions	26 Days		
	What Makes a Function Linear?			
	Recognizing Linear Functions from Words, Tables, and Graphs			
	Calculating and Interpreting Slope			
	Effects of Changing Parameters of an Equation in Slope-Intercept Form			
	Forms of Linear Equation			
	Point-Slope Form of Linear Equations			
Unit Five	Scatter Plots & Trend Lines	21 Days		
	One Variable Data			
	Introduction to Scatterplots and Trend Lines			
	Technology and Linear Regression			
	Explorations of Data Sets			
	Exploring the Influence of Outliers on Trend Lines			
	Piecewise Functions			
Unit Six	Systems of Linear Equations	13 Days		
	Solving Systems of Linear Equations			
	Solving Systems of Linear Equations Using Substitution			
	Solving Systems of Linear Equations Using Elimination			
Unit Seven	Introduction to Exponential Functions	25 Days		
	A New Function Family – World Population Growth			
	Exponential Growth and Exponents			
	Exploring Parameters of Exponential Functions			
	Modeling Exponential Data			
	Exponential Patterns and Per Cent Change			
	Exponential Functions and Climate Change			
Unit Eight	Quadratic Functions and Equations	27 Days		
	Another Nonlinear Family: Parabolas Everywhere			
	Quadratic Functions in Vertex Form			

Solving Quadratic Equations Using the Square Root Property	
Quadratic Functions in Factored Form	
Factoring Quadratic Trinomials	
Solving Quadratic Equations by Completing the Square and the	
Quadratic Formula	

School-wide Academic Expectations Taught In This Course

- Communication
- \circ Collaboration
- o Analysis
- o Literacy

School-wide Social and Civic Expectations Taught in This Course

- Demonstrate Resiliency
- Demonstrate Responsibility
- Demonstrate Respect

Content Standards Taught in This Course

- F-IF 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.
- F-BF 1. Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
- F-BF 2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
- 8EE 7. Solve linear equations in one variable.

a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where *a* and *b* are different numbers).

b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

A-SSE 1. Interpret expressions that represent a quantity in terms of its context.

- a. Interpret parts of an expression, such as terms, factors, and coefficients.
- b. Interpret complicated expressions by viewing one or more of their parts as a single entity...

A-SSE 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

A-CED 1. Create equations and inequalities in one variable and use them to solve problems.

A-CED 4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

A-REI 1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

A-REI 3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

N-Q 1 Use units as a way to understand problems and to guise the solution of multi-step problems; choose and interpret units consistently in formulas

N-Q 2 Define appropriate quantities for the purpose of descriptive modeling.

N-Q 3 Choose a level of accuracy appropriate to limitations on measurements when reporting quantities.

8F 1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

8F 2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

8F 5. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

A-CED 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A-CED 10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

F-IF 1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If *f* is a function and *x* is an element of its domain, then f(x) denotes the output of *f* corresponding to the input *x*. The graph of *f* is the graph of the equation y = f(x).

F-IF 2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F-IF 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities and sketch graphs showing key features given a verbal description of the relationship.

F-IF 5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

F-IF 7b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions

F-IF 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

F-IF 6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

F-IF 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple

cases and using technology for more complicated cases.

F-IF 8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

F-LE 1. Distinguish between situations that can be modeled with linear functions [and with exponential functions].

a. Prove that linear functions grow by equal differences over equal intervals...

b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another....

F-LE 2. Construct linear functions, including arithmetic sequences, given a graph, a description of a relationship, or two input-output pairs

F-LE 5. Interpret the parameters in a linear ... function in terms of a context.

8-SP 2. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

8-SP 3. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.

S-ID 2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

S-ID 3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

S-ID 6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.

b. Fit a linear function for a scatter plot that suggests a linear association.

S-ID 7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

S-ID 8. Compute (using technology) and interpret the correlation coefficient of a linear fit.

S-ID 9. Distinguish between correlation and causation.

A-CED 3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

A-REI 5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

A-REI 6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

A-REI 11. Explain why the *x*-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear functions.

N-RN 1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

N-RN 2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.

A-SSE 1b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

A-SSE 3c. Use the properties of exponents to transform expressions for exponential functions.

F-IF 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

a. Graph exponential ... functions, showing intercepts and end behavior... F-IF 8b. Use the properties of exponents to interpret expressions for exponential functions.

F-BF 2. Write geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

F-LE 1. Distinguish between situations that can be modeled with linear functions and with exponential functions.a. Prove ... that exponential functions grow by equal factors over equal intervals....

b. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

F-LE 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

F-LE 3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly.

F-LE 5. Interpret the parameters in an exponential function in terms of a context.

8EE 2. Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.

A-SSE 3. a Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

A-REI 4. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this

form. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation.

A-APR 1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

A-CED 1. Create equations and inequalities in one variable and use them to solve problems.

A-CED 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

F-IF 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries.

F-IF 7a. Graph quadratic functions and show intercepts, maxima, and minima.

F-IF 8a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

F-BF 3. Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology...

Unit 1: Patterns

Introduction and Established Goals: This is the introductory unit for the Algebra I course. Students will express their mathematical background, as well as showing their abilities to work cooperatively and to communicate clearly both orally and in writing. At the same time, students will engage in learning mathematical skills within the context of interesting problems that connect to real world issues. Throughout this course, it is hoped that students recognize and appreciate the power of mathematical thinking and how analyzing mathematical models aids in making important decisions. This unit demonstrates how ubiquitous patterns are in nature and in man-made objects.

Desired Outcome(s): Analyzing patterns and writing recursive and explicit algebraic rules provides a powerful way to extend patterns and make predictions.

CT/Common Core State Standard(s):

- F-IF 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.
- F-BF 1. Write a function that describes a relationship between two quantities.
- Determine an explicit expression, a recursive process, or steps for calculation from a context.
- F-BF 2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
- CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grade 9 text and topics.

Math Practice(s):

- MP4) Model with mathematics
- MP8) Look for and express regularity in repeated reasoning

Essential Question(s):

- What is a sequence?
- How can patterns be represented?
- What are the advantages and disadvantages of a recursive rule compared to an explicit rule?

Key Terms/Concepts: Arithmetic Sequence, Atom, Butane, Energy, Ethane, Explicit Rule, Methane, Fossil Fuel, Fractal, Geometric Sequence, Hexagon, Honeycomb, Hydrocarbon, Ion, Integer, Kilojoule, Mole, Molecular Structure, Molecule, N-th Term, Pentagon, Propane, Recursive Rule, Rule of 72, Symbolic Algebraic, Expression, Truss Style Bridge

STANDARD	LEARNING OBJECTIVES (Content and Skill)	INSTRUCTIONAL STRATEGIES	ASSESMENT EVIDENCE
8-F 2	1. Identify patterns from real world contexts	 1.1.1 Exploring with Hydrocarbons 	Exit Slip 1.1

Unit 1 – LEARNING PLAN

		• 1.1.2 Burning Hydrocarbons	Journal Entry
F-BF 1	2. Represent patterns	• 1.1.3 Organic Alcohols	
	using tables, graphs,	• Using eChem to Model	
F-IF 3	and equations	Molecules	
		o Titan Video	
CCSS.ELA-	3. Use patterns to solve	 NASA Solar System 	
LITERACY.RST.9-	problems	Exploration	
10.4		• Molecular modeling kit	
1001		(Styrofoam, gum drops, or	
		marshmallows)	
F-IF 3	4. Add subtract multiply	\circ 1.2.1 Algebra Tiles and	Exit Slip 1.2.1
	and divide integers	Integers	
F-BF 1		• 1.2.2 Patterns in Signed	Exit Slip 1.2.2
	5. Apply order of	Numbers	I 15 (
CCSS.ELA-	operations to simplify	\circ 1.2.3 Bingo with Order of	Journal Entry
LITERACY.RST.9-		Operations	
10.4		Exploring Krypto	
		• 1.2.4 Order of Operations	
		o 1.2.5 Lifting Weights	
		\circ 1.2.6 Patterns in Arithmetic	
		• 1.2.7 Stack of Cups	
F-BF 1	6. Identify arithmetic	\circ 1.3.1 Recursive and Explicit	Exit Slip 1.3
	sequences	Rules for Arithmetic	I 15 (
F-BF 2	7 Write requiring rules	Sequences	Journal Entry
	7. While recursive rules	o 1.3.2 Building Bridges	Mid Unit Tost
CCSS.ELA-	and explicit fules	• 1.3.3 Arithmetic Sequences	Mid-Offit Test
LITERACY.RST.9-	8 Use patterns to solve	with Calculators	
10.4	problems	0 1.5.4 Monegan Sun Arena	
F-BF 1	9. Find recursive rules	• 1.4.1 Doubling Your Money	Exit Slip 1.4
		• 1.4.2 Applications of	
F-BF 2	10. Calculate terms of	Geometric Sequences	Journal Entry
	geometric sequences	• 1.4.3 More Geometric	
CCSS.ELA-		Sequences	
LITERACY.RST.9-	11. Explain the difference	• Illuminations' <i>Devil and</i>	
10.4	between an arithmetic	Daniel Webster Activity	
	and a geometric		
FIF 2	12 Create fractals	Fractal Website	Exit Slip 1 5
F-IF 5	12. Create fractais	alicekelley.com	Exit Sup 1.5
F PF 1	13. Identify patterns in	\circ 1.5.1 Fractal Geometry	Journal Entry
T-DF I	fractals	0 1.5.2 Sierpinski's Triangle	j
F.BF 2		o 1.5.3 Koch Spowflake	
r-Dr 2	14. Write recursive rules		
CCSS EL A	for geometric sequences		
LUSS.LLA-			
10 A			
10.4		a Unit 1 Donformen as Test	End of Linit Test
		O Unit i Performance Task	End of Unit Test
		(noneycomos)	

Suggested Resources and Texts: Titan video, NASA Solar System Exploration, Molecular modeling kit, Krypto game, The story of Devil and Daniel Webster by Illuminations, kokogiak's collection of pennies, The rule of 72 - 114 - 144 by allfinancialmatters, alicekelley.com, splashnology fractal designs, incrediblesnaps fractal desings

Suggested Technology: LCD Projector, Teacher computer with internet access and speakers, Computer lab or student computers for Excel exploration, graphing calculators, TI-SmartView Emulator or other means to project calculator steps

Unit 2: Linear Equations and Inequalities

Introduction and Established Goals: The material in this unit is the heart of algebraic thinking. Students write, simplify, evaluate, and model situations with linear expressions. Students then examine the concept of equality and use linear equations and linear inequalities to model and solve real-world problems. The properties of real numbers play a prominent role in this unit. The commutative, associative, and distributive properties are used when students simplify and evaluate expressions and solve multi-step equations. Opposites, reciprocals, and order of operations are used when students evaluate expressions and solve equations. Students revisit rational numbers when they solve equations and inequalities with rational number coefficients and rational number solutions.

Desired Outcome(s): To obtain a solution to an equation, no matter how complex, always involves the process of undoing the operations.

CT/Common Core State Standard(s):

- 8EE 7. Solve linear equations in one variable.
 - Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where *a* and *b* are different numbers).
 - Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
- A-SSE 1. Interpret expressions that represent a quantity in terms of its context.
- Interpret parts of an expression, such as terms, factors, and coefficients.
- Interpret complicated expressions by viewing one or more of their parts as a single entity.
- A-SSE 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
- A-CED 1. Create equations and inequalities in one variable and use them to solve problems.
- A-CED 4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
- A-REI 1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
- A-REI 3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
- N-Q 1 Use units as a way to understand problems and to guise the solution of multi-step problems; choose and interpret units consistently in formulas
- N-Q 2 Define appropriate quantities for the purpose of descriptive modeling.

- N-Q 3 Choose a level of accuracy appropriate to limitations on measurements when reporting quantities.
- CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grade 9 text and topics.

Math Practice(s):

- MP1) Make sense of problems and persevere in solving them
- MP6) Attend to precision
- MP7) Look for and make use of structure

Essential Question(s):

- What is an equation?
- What is an expression?
- What does equality mean?
- What is an inequality?
- How can we use linear equations and linear inequalities to solve real world problems?
- What is a solution set for a linear equation or linear inequality?
- How can models and technology aid in the solving of linear equations and linear inequalities?

Key Terms/Concepts: Algebraic expression, associative property, coefficient, constant, commutative property, distributive property, evaluate, inequality symbol, integers, inverse operations, linear inequalities, literal equations, order of operations, properties of equality, real numbers, simplify, variable

STANDARD		LEARNING OBJECTIVES (Content and Skill)	INSTRUCTIONAL STRATEGIES	ASSESMENT EVIDENCE
AA-SSE 1	1.	Represent algebraic	• 2.1.1 The Magic of Algebra	Exit Slip 2.1
		expressions by verbal	• 2.1.2 Representing	Lesson al Endore
CCSS.ELA-		descriptions and	Expressions with Stories &	Journal Entry
LITERACY.KST.9-		nowcharts	Flowcharts	
10.4	2.	Convert verbal	5 2.1.5 Representing Expressions with Algebra	
		descriptions to algebraic	Arrows	
		expressions	• Fi.uu.nl/wisweb/en Algebra	
			Arrows Applet	
	3.	Evaluate algebraic	• 2.1.4 Evaluating Algebraic	
		expressions	Expressions	
8EE 7	4.	Write linear equations	• 2.2.1 Solving Equations using	Exit Slip 2.2
		that model real world	Flowcharts	
A-CED 1		scenarios	• 2.2.2 Solving Equations with	Journal Entry 1
	_		Algebra Tiles	Lesson al Enders 2
A-KEI I	э.	Solve one- and two-step	• 2.2.3 Solving One-Step Linear	Journal Entry 2
A-REI 3		inical equations	Equations	
	6	Justify their steps using	• 2.2.4 Equations in Education	
	0.	algebraic properties	• 2.2.5 New York City Cab	
		or r r	rates	

Unit 2 – LEARNING PLAN

CCSS.ELA- LITERACY.RST.9- 10.4		 2.2.6 Station Problems Group Activity 2.2.7 Solving Two-Step Linear Equations NVLM Balance Scale Applet 	
8EE 7 A-SSE 3	7. Write linear equations that model real world scenarios	 2.3.1 Combining Like Terms with Algebra Tiles 2.3.2 Solving Equations that Contain Like Terms 	Exit Slip 2.3.1 Exit Slip 2.3.2
A-CED 1 A-REI 1 A-REI 3 CCSS.ELA- LITERACY.RST.9- 10.4	 8. Solve equations with variables on both sides 9. Justify their steps using the properties of equality 10. Recognize equations for which there is no solution 	 2.3.3 Solving Equations with Variables on Both Sides Writing and solving equations group activity 2.3.4 Practice Solving Equations NVLM Balance Scales 2.3.5 Solving Equations with Balance Scales 2.3.6 How Many Solutions 	Journal Entry 1 Journal Entry 2 Mid-Unit Test
	11. Recognize equations for which there are infinite solutions	• 2.3.7 Comparing Cab Fares	
8EE 7 A-SSE 3 A-CED 1 A-REI 1 A-REI 3 CCSS.ELA- LITERACY.RST.9- 10.4	 12. Solve multi-step equations in a variety of contexts using the distributive property and combining like terms 13. Change the subject of a 	 2.4.1 Solving Problems Using the Distributive Property Group Activity 2.4.2 Distributive Property with Algebra Tiles 2.4.3 Using the Distributive Property 2.4.4 Walk-A-Thon 2.4.5 Epic Win, Epic Fail Group Activity NCTM Illuminations Balance Activity 2.4.6 Pizza Party 2.4.7 Multi-Step Equation Challenge Algebralab.org additional practice 2.4.8 Fraction Busters 2.4.9 Geometry and Sports 2.4.10 Arithmetic Sequences Revisited 2.4.11 Big Brain Contest Competition 2.5.1 Literal Equations 	Exit Slip 2.4.1 Exit Slip 2.4.2 Exit Slip 2.4.3 Journal Entry
A-CED 4 A-REI 3	13. Change the subject of a formula in a literal equation	 2.5.1 Literal Equations 2.5.2 More Literal Equations 2.5.3 Literal Equations with 	Exit Slip 2.5 Journal Entry 1
CCSS.ELA- LITERACY.RST.9- 10.4	 Explain why one would want to change the subject of a formula 	Flowcharts• 2.5.4 Green Problems• Comparison Powerpoint• Calculator Programming	Journal Entry 2

A-CED 1	15. Write and solve linear	• 2.6.1 Representing	Exit Slip 2.6.1
	inequalities in context	Inequalities	
A-REI 3		\circ 2.6.2 Equations and	Exit Slip 2.6.2
	16. Justify why the	Inequalities	
CCSS.ELA-	inequality symbol is	• 2.6.3 When Do We Flip It?	Journal Entry
LITERACY.RST.9-	reversed when	• Optional Graphing Calculator	
10.4	multiplying or dividing	Program	
	by a negative number,	• 2.6.4 Working with	1
		Inequalities	
	17. Solve multi-step linear	• 2.6.5 Practice Solving	
	inequalities	Inequalities	
		o 2.6.6 Putting It All Together	
		o 2.6.7 Passing Linear	
		Inequalities Group Work	
		• 2.6.8 Inequalities in the Real	
		World	
		• Prepsportswear.com activity	
		Unit 2 Performance Task (iPods)	End of Unit Test

Suggested Resources and Texts: WisWeb Algebra Arrows, Algebra Balance Scales (Positive and Negative Coefficients; NVLM) Applet, Algebra Tiles, Pan Balance NCT Illuminations Applet, AlgebraLab.org Online Practice, onlinemathlearning.com Multi-Step Equations, yourteacher.com Multi-Step Equations, education.ti.com Programming Tutorials,

teachers.henrico.k12.va.us/math/hcpsalgebra1/module3-5.html Comparison Powerpoint, LINEQUA information on TI Website, prepsportswear.com

Suggested Technology: Graphing Calculators

Unit 3: Functions

Introduction and Established Goals: Students are introduced to the concept of a function in the first investigation of this unit. After identifying relationships that are or are not functions, they learn how to define the domain and range of a function.

Desired Outcome(s): Students will understand that functions are a mathematical way to describe relationships between two quantities that vary.

CT/Common Core State Standard(s):

- 8F 1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- 8F 2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
- 8F 5. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
- A-CED 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- A-CED 10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
- F-IF 1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If *f* is a function and *x* is an element of its domain, then f(x) denotes the output of *f* corresponding to the input *x*. The graph of *f* is the graph of the equation y = f(x).
- F-IF 2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- F-IF 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities and sketch graphs showing key features given a verbal description of the relationship.
- F-IF 5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
- F-IF 7b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions
- F-IF 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
- CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grade 9 text and topics.

Math Practice(s):

- MP4) Model with mathematics
- MP5) Use appropriate tools strategically

Essential Question(s):

- What is a function?
- What are the different ways in which functions may be represented?
- How can functions be used to model real world situations, make predictions, and solve problems?

Key Terms/Concepts: Dependent Variable, Domain, Equation of a Function, Evaluating a Function, Function, Function Notation, Graph of a Function, Independent Variable, Input, Linear Function, Mapping Diagram, Non-Linear Function, Ordered Pair, Output, Parabola, Range, Relation, Table, Vertical Line Test

STANDARD	LEARNING	INSTRUCTIONAL	ASSESMENT
	OBJECTIVES	STRATEGIES	EVIDENCE
	(Content and Skill)		
8 F-1	1. Identify whether a given	3.1.1a/b Representing Relations	Exit Slip 3.1
	relation is a function		I and the second second
r-If I	2 Identify domain and	3.1.2 Is It a Function?	Journal Entry
CCSS FLA	2. Identify domain and		
LUSS.ELA- LITERACV RST 0-	range of functions		
10.4			
8 F-2	3. Identify functions and	Tap Water vs. Bottle Water	Exit Slip 3.2
	non-functions in real	Video	Ĩ
8 F-5	world contexts	3.2.1 Bottled Water	Journal Entry
		3.2.2 Hartford Precipitation	
A-CED 2	4. Determine the input	3.2.3 Functions Everywhere	
	variable and the output	3.2.4 Celsius and Fahrenheit	
A-CED 10	variable	3.2.5 The Raven and the Jug	
E IE O	5 Depresent function by		
I'-II' 7	tables and graphs and		
CCSS.ELA-	words		
LITERACY.RST.9-	words		
10.4			
F-IF 2	6. Use function notation to	3.3.1 Function Machines	Exit Slip 3.3.1
	solve problems	3.3.2 Introduction to Function	
CCSS.ELA-		Notation	Exit Slip 3.3.2
LITERACY.RST.9-	7. Evaluate functions using	3.3.3 Exchange Rates	
10.4	function notation	3.3.4 Hot Air Balloon Group	Journal Entry
		Activity	
		3.3.5 Piecewise Functions	
A-CED 2	8. Evaluate linear and non-	Parent Functions Reference Sheet	Exit Slip 3.4
	linear functions in	3.4.1 Highway Driving	
F-1F 4	context	3.4.2 Travel Time	Journal Entry
		3.4.3 Free Throws	

Unit 3 – LEARNING PLAN

F-IF 5	9. Identify the domain and	3.4.4 Height of a Ball	
CCSS.ELA-	range of linear and non-	3.4.5 Volume of a Cube	
LITERACY.RST.9-	linear functions	3.4.6 Phone Tree	
10.4		3.4.7 Handshakes Group Activity	
		3.4.8 Geoboard Squares	
		Thefutureschannel.com Video	
		(The Wind Business)	
		Powermills Activity	
		3.4.9 U.S. Postal Service Rates	
		Unit 3 Performance Task	End of Unit Test
		(Functions in the Real World)	

Suggested Resources and Texts: bottledwater.org, weather.com, bofunk.com video on consumer preference for bottled water, environmental video on thefutureschannel, powermills activity sheet

Suggested Technology: Projector

Unit 4: Linear Functions

Introduction and Established Goals: Students start Unit 4 by exploring the distinction between linear and nonlinear behavior, and then focus on learning about linear functions. Throughout Unit 4, students derive linear models of real-world situations in order to analyze situations, make predictions or solve problems. Analyzing situations often takes the form of identifying the real world meaning of the slope and the *x*- and *y*-intercepts of a linear model. Making predictions involves evaluating models for a given independent variable (given *x* find *y*), and solving equations for the independent variable given the dependent variable (given *y* find *x*). Problem solving occurs through the use of various representations: algebraic, tabular, graphic and numeric.

Desired Outcome(s): Students will understand linear functions are characterized by a constant average rate of change (or constant additive change).

CT/Common Core State Standard(s):

- F-IF 6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
- F-IF 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
- \circ $\,$ Graph linear ...functions and show intercepts.
- F-IF 8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
- F-LE 1. Distinguish between situations that can be modeled with linear functions [and with exponential functions].
 - Prove that linear functions grow by equal differences over equal intervals...
 - Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
- F-LE 2. Construct linear functions, including arithmetic sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
- F-LE 5. Interpret the parameters in a linear function in terms of a context.
- CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grade 9 text and topics.

Math Practice(s):

- MP4) Model with mathematics
- MP5) Use appropriate tools strategically

Essential Question(s):

- What is a linear function?
- What are the different ways that linear functions may be represented?
- What is the significance of a linear function's slope and y-intercept?
- How many linear functions model real world situations?

• How may linear functions help us analyze real world situations and solve practical problems?

Key Terms/Concepts: Constant Additive Change, Convex Polygon, Dependent Variable, Direct Variation, Independent Variable, Initial Value, Linear Function, Linear Models, Magnitude, Nonlinear Function, Parameters, Piecewise Function, Point-Slope Form, Rate of Change, Slope, Slope-Intercept Form, Standard Form, Unit Rate, Velocity, x-intercept, y-intercept

STANDARD		LEARNING	INSTRUCTIONAL	ASSESMENT
		OBJECTIVES	STRATEGIES	EVIDENCE
		(Content and Skill)		
FLE-1	1.	Interpret distance-time	• "Do the Locomotion" Intro	Exit Slip 4.1.1
		graphs and tables in	Video	
FIF-7A		terms of the motion of	 Sheila Patek TED Talk 	Exit Slip 4.1.2
		an object	 Aimee Mullens TED Talk 	
CCSS.ELA-			 Maglev Train Video 	Journal Entry
LITERACY.RST.9-	2.	Write a verbal	• 4.1.1 What Makes a Function	
10.4		description of a	Linear	
		distance-time function,	o 4.1.2 Motion Graph	
		sketch its graph, and	Scenarios	
		values	• 4.1.3 More Motion Graphs	
		values	• 4.1.4 Stories and Graphs	
	3.	Distinguish between	\circ 4.1.5 Motion Graph	
		linear and non-linear	Challenge Problems	
		functions by recognizing		
		that linear functions		
		have a constant rate of		
		change whether the		
		function is given		
		verbally, graphically, or		
		in table form.		
	Δ	Identify distance-time		
	4.	functions with slopes of		
		different magnitudes		
		from the verbal		
		description, the graph,		
		and the table		
	5.	Distinguish between		
		distance-time functions		
		with positive slopes and		
		alongs given a verbal		
		graphical or tabular		
		representation of the		
		function		
F-IF6	6.	Distinguish between a	• 4.2.1 Pizza Problems	Exit Slip 4.2
		linear and non-linear	• 4.2.2 Recognizing Linear	×
F-LE1			Functions	Journal Entry

Unit 4 – LEARNING PLAN

		function from a table of	\circ 4.2.3 Using Tables to	
F-LE1A		values and from a graph	Determine if a Function is	
		8 1	Linear Group Work	
CCSS.ELA-	7.	Transform a function	• 4.2.4 Draining a Swimming	
LITERACY.RST.9-		from one representation	Pool Group Work	
10.4		to another	• 4.2.5 Ordering DVDs	
			\circ 4.2.6 Linear Functions in	
	8.	Identify a linear	Geometry	
		function's constant	\circ 4.2.7 Teddy Bear Sales	
		average rate of change		
		and y-intercept and		
		interpret them in a non-		
		contextual setting		
	0	T I		
	9.	Use an equation or a		
		graph of a function that		
		situation to produce a		
		narticular ordered pair		
		and give an appropriate		
		interpretation of its		
		meaning in context		
		0		
	10.	Choose appropriate		
		increments and scales to		
		construct tables and		
		four-quadrant graphs		
		and select the		
		appropriate table set up		
		and windows when		
		using technology and		
		use the trace feature to		
		demonstrate the		
		ordered pair and a point		
		on the graph		
	11		0	Ouiz on
	11.			Investigations
				4.1 and 4.2
F-IF6	12.	Determine run, rise, and	• 4.3.1 What is Slope	Exit Slip 4.3.1
		slope given two points	• 4.3.2 Calculating and	×
F-LE1A		in the coordinate plane	Interpreting Slope	Exit Slip 4.3.2
		_	• 4.3.3 Positive and Negative	_
F-LE1B	13.	Identify the slope given	Slope	Journal Entry
		the verbal description,	• 4.3.4 Magnitude of Slope	
CCSS.ELA-		graphic, or tabular		
LITERACY.RST.9-		model of a linear		
10.4		tunction		
	1.4			
	14.	Graph a line given a		
		point and the average		
		rate of change of slope		
	15	Graph a linear function		
	15.	by creating a table of		

	16.17.18.19.	values when given an equation for the linear function Recognize rates in the form of units of the dependent variable per units of independent variable Interpret the rate of change of the linear function in a real-world context Identify and graph horizontal and vertical lines		
		perpendicular		
F-LE2	20.	Describe the changes in	• 4.4.1 Effects of Changing	Exit Slip 4.4.1
F-LE5	21.	a line that occur when	 4.4.2 Slope-Intercept Form 	Exit Slip 4.4.2
F-IF7		the y-intercept increases or decreases	 4.4.3 Practice with Slope- Intercept Form 	Journal Entry
	22	Describe the changes in	• 4.4.4 Making a Profit	
	22.	a line that occur when	 4.4.5 Applications of Slope- Intercept Form 	
G-GPE 5		the slope increases or decreases	• 4.4.6 Parallel and	
CCSS.ELA- LITERACY.RST.9- 10.4	23.	Graph a line given the slope intercept form of a line by first plotting the y-intercept then using slope to find a second point on the line	 Perpendicular Lines 4.4.7 More Parallel and Perpendicular Lines 	
	24.	Explain the meaning of a change in slope or a change in y-intercept in the context of a real world problem		
	25.	Identify the slope and y- intercept of a line from the graph of a linear function		
	26.	Find the slope intercept form of the equation of a line given its graph with		

	 the y-intercept and an indicated point 27. Identify parallel lines as having the same slope, but distinct y-intercepts 28. Identify perpendicular lines as having slopes that are opposite reciprocals (product of -1) 		
	29.	0	Mid-Unit Test
F-LE5	30. Recognize two forms of	• 4.5.1 Direct Variation	Exit Slip 4.5
F-LE2	31 Recognize direct	 4.5.2 More Direct Variation 4.5.3 Standard Form of a Linear Equation 	Journal Entry 1
F-LE1	variation problems as a	• 4 5 4 More Standard Form	Journal Entry 2
CCSS.ELA- LITERACY.RST.9- 10.4	special case of slope- intercept form	 4.5.5 Practice with Standard Form and Slope-Intercept 	Journal Entry 3
	32. Model a real world	 Slope Intercept Online Game 	
	situation with an appropriate form of a linear equation	• Video on Roof Trusses	
	33. Find x and y intercepts and slope of a linear function given any form of the equation		
	34. Draw the graph given the x and y intercepts, slope and y-intercept		
	35. Explain what the x and y intercepts represent in the context of a real world problem		
	36. Transform linear equations from standard form to slope-intercept form		
			Unit 4 Investigation 5 Quiz
F-LE 5	37. Write an equation of a	• 4.6.1 Trends in Bottled	Exit Slip 4.6.1
F-LE2	line in the context of a real world of a real	Water Consumption• 4.6.2 Point-Slope Form of an• Evention	Journal Entry 1
F-IF8	38. Write the equation of a	 A.6.3 Practice with Point- Slope Form 	Exit Slip 4.6.2
F-LE1	line in slope-intercept	• 4.6.4 Can We Both Be Right	Journal Entry 2

CCSS.ELA- LITERACY.RST.9- 10.4	 form, point-slope form, or standard form 39. Transform an equation from slope-intercept form or point-slope form to standard form 40. Transform an equation from point-slope form or standard form to slope- intercept form 41. Make predictions based on the meaning of the function 42. Use slope and intercepts to analyze real world 	 4.6.5 Transforming Linear Forms 4.6.6 Finding and Using Linear Functions 4.6.7 You Choose Forest Elementray Link NY Times Bottled Water Archive Activity 	
	to analyze real world problems	Unit 4 Parformance Task (Linear	End of Unit Tost
		Models)	End of Unit Test

Suggested Resources and Texts: NCTM Illuminations lesson "Movement with Functions," Time-Distance lessons under "classroom activities" on the Texas instruments website, Workbooks from Texas Instruments such as *Real World Math Made Easy* by Chris Brueningsen, *CBR Explorations: Math and Science in Motion* by Brueningsen, Forest Elementary Article hometownlife.com, NY Times bottled water archive topics.nytimes.com, slope intercept game links at hotmath.com, video on roof trusses on youtube

Suggested Technology: Motion detector such as those by Vernier, Projector, graphing calculators

Unit 5: Scatter Plots and Trend Lines

Introduction and Established Goals: Students will begin the unit by exploring measures of central tendency and spread and displays of one-variable data including, dot plots, histograms, and box-and-whisker plots. They will use the five number summary to create box-and-whisker plots and identify outliers with the 1.5 X IQR rule. They will be introduced to using the STAT menu on the graphing calculator.

Desired Outcome(s): Although scatter plots and trend lines may reveal a pattern, the relationship of the variables may indicate a correlation, but not causation.

CT/Common Core State Standard(s):

- 8-SP 1. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
- 8-SP 2. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
- 8-SP 3. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.
- S-ID 2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
- S-ID 3. Interpret differences in shape, center, and spread in the context of the data sets,
 accounting for possible effects of extreme data points (outliers).
- S-ID 6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
 - Fit a function to the data; use functions fitted to data to solve problems in the context of the data.
 - Fit a linear function for a scatter plot that suggests a linear association.
- S-ID 7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
- S-ID 8. Compute (using technology) and interpret the correlation coefficient of a linear fit.
- $\circ~$ S-ID 9. Distinguish between correlation and causation.
- CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grade 9 text and topics.

Essential Question(s):

- How do we make predictions and informed decisions based on current numerical information?
- What are the advantages and disadvantages of analyzing data by hand versus by using technology?
- What is the potential impact of making a decision from data that contains one or more outliers?

Key Terms/Concepts:

Boxplot, causation, correlation, correlation coefficient, data, data set, dependent variable, distribution, domain, extrapolation, graphical representation, histogram, independent variable, interpolation, interquartile range (IQR), line of best fit, linear regression, linear relationship/model, mean (average), median, measures of central tendency, mode, nonlinear relationship/model, ordered pair, outlier, piecewise function, prediction, regression equation, scale, scatter plot, skewed distribution, slope, trend line, variable, x intercept, y intercept.

STANDARD	LEARNING OBJECTIVES	INSTRUCTIONAL	ASSESMENT
	(Content and Skill)	STRATEGIES	EVIDENCE
S-ID 1	1. Find and understand	• "The Power of Hurricanes"	Exit Slip 5.1.1
	measures of center	Video	
S-ID 2		o 5.1.1 Hurricanes	Exit Slip 5.1.2
	2. Find and understand	• 5.1.2 Home Run Hitters	T 15
S-ID 3	measures of spread	• 5.1.3 More Histograms	Journal Entry
CCSS EL A	2 Create and interpret a dot	\circ 5.1.4 The Five-Number	
LUSS.ELA- LITERACV DST 0-	5. Create and interpret a dot	Summary	
10 4	and-whisker plot	\circ 5.1.5 Outliers and the	
10.4	and whisker plot	1.5xIQR Rule	
		• 5.1.6 Box-and-Whisker Plots	
		o 5.1.7 Test Grades	
8-SP 1	4. Be able to fit a trend line	• Sea Level Rise Powerpoint	Exit Slip 5.2.1
0 CD 2	to data.	• 5.2.1 Sea Level Rise	Enit Slin 5 2 2
8-SP 2	5 Write on equation for a	• 5.2.2 Scatter Plots and Trend	Exit Shp 5.2.2
8-SP 3	5. White an equation for a		Journal Entry
0-51 5		• 5.2.3 Television, Homework,	Journal Entry
S-ID 6 a. c	6. Use the equation to	and Test Scores	
5 12 ° u, c	interpolate or extrapolate	\circ 5.2.4 Height and Shoe Size	
S-ID 7	1 1		
	7. Be understand the		
CCSS.ELA-	contextual meaning of		
LITERACY.RST.9-	the parameters of the		
10.4	trend line equation		
0.075.4			
8-SP 1	8. Be able to find the	• 5.3.1 Fitting Lines with	Exit Slip 5.3
9 CD 2	equation for the line of	Technology	Journal antru
0-51 2	best in using technology	\circ 5.3.2 Evolution of the	Journal entry
8-SP 3	9 Identify the strength and	Telephone	
	direction of a trend line	• Evolution of the Telephone	
		v ideo	

LEARNING PLAN

S-ID 6 a, c S-ID 7 S-ID 8 S-ID 9 CCSS.ELA- LITERACY.RST.9- 10.4	using the correlation coefficient 10. Explain the difference between one variable being correlated to the other and one variable causing the other to occur	 5.3.3 Correlation and Causation 5.3.4 Shark Attacks 5.3.5 Regression Equation Practice 	
8-SP 1 S-ID 6 S-ID 8 CCSS.ELA- LITERACY.RST.9- 10.4	 11. Answer a question about the world that can be analyzed with bivariate data 12. Be able to use technology to calculate the regression equation and correlation coefficient 13. Solve an equation for y given x and x given y 14. They will be able to explain the meaning of slope and intercepts in context 15. Distinguish between data that is correlated compared to causal 	 5.4.1 Forensic Anthropology Forensic Anthropology Powerpoint 5.4.2 Rubber Bands 5.4.3 Stadium Wave 5.4.4 Balloons 5.4.5 Walking Away 5.4.6 Population and Representation 5.4.7 Conducting an Experiment 	Exit Slip 5.4 Journal Entry
S-ID 6 S-ID 8 CCSS.ELA- LITERACY.RST.9- 10.4	 16. Define an outlier 17. Identify whether a potential outlier is present on a scatter plot and name the coordinates of the outlier 18. Draw regression lines and provide a general description of the influence that outliers have on the slope as well as the direction and strength of the relationship between two variables 	 5.5.1 Outliers 5.5.2 Barry Bonds' Home Runs 5.5.3 Home Prices 5.5.4 Chicago Bulls 5.5.5 Crickets Chirping The Outlier Game 	Exit Slip 5.5 Journal Entry

	19. Describe the impact that outliers have on linear regression equations, their related components, and the conclusions drawn from an analysis of a data set in which they are included			
8-SP 1 8-SP 2 8-SP 3 S-ID 6 a, c S-ID 7 F-IF 7b CCSS.ELA- LITERACY.RST.9-	 20. Identify two points on each line segment and use them to calculate the equation of the line that contains that segment 21. Identify the domain for which the line segment fits the data 22. Write the piecewise function given the graph 23. Create a story that 	 5.6.1 Swimming Records 5.6.2 Paychecks & Triathlons 5.6.3 Dog Food 5.6.4 Feeding the Birds 5.6.5 Bike Tours 5.6.6 Creating Stories 	Exit Slip 5.6 Journal Entry 1 Journal Entry 2	
10.4	describes a piecewise graph	Unit 5 Performance Task (Linearity is in the Air – Can You Find It?)	End of Unit Test	

Suggested Resources and Texts: Raw Spaghetti, Measuring Tapes, Yard Sticks, Rulers, Rubber Bands, Youtube.com, Masking Tape, Balloons, Small Aerobic Exercise Equipment

Suggested Technology: Graphing Calculators, Computer, Projector, Stopwatch

Unit 6: Systems of Equations

Introduction and Established Goals: Through the three investigations in this unit, students will understand how to solve equations involving two unknowns, both algebraically and graphically. Students will identify the point of intersection of the two lines as the solution of the system of equations and then interpret the solution in the context of the problem. Students will recognize when one method of solving a system of linear equations is more advantageous than another.

Desired Outcome(s): Students will understand that a system of linear equations is an algebraic way to compare two equations that model a situation and find the breakeven point or choose the most efficient or economical plan.

CT/Common Core State Standard(s):

- A-CED 3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
- A-REI 5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
- A-REI 6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
- A-REI 11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear functions.

Math Practice(s):

- MP4 Model with Mathematics
- MP5 Use appropriate tools strategically

Essential Question(s):

- What does the number of solutions (none, one or infinite) of a system of linear equations represent?
- What are the advantages and disadvantages of solving a system of linear equations graphically versus algebraically?

Key Terms/Concepts: Addition Property of Equality, Breakeven Point, Elimination Method for Solving Systems of Equations, Fixed Cost, Multiplication Property of Equality, Profit, Revenue, Solution of Linear Equations, Substitution Method for Solving Systems, Substitution Property of Equality, System of Linear Equations, Total Cost, Transitive Property of Equality, Variable Cost

LEARNING PLAN

STANDARD	LEARNING	INSTRUCTIONAL	ASSESMENT	
	OBJECTIVES	STRATEGIES	EVIDENCE	
	(Content and Skill)			
A-REI #6	1. Write equations to model a situation, graph equations,	• 6.1.1 Will Women Catch the Men?	Exit Slip 6.1	
A-REI #11	find the point of intersection,	• 6.1.2 Choosing a Gym	Journal Entry	
	and interpret the solution in	• 6.1.3 Solving Systems of		
	the context of the problem	Equations by Graphing		
	2. Solve a system of linear	O 0.1.4 Systems with Equations in Different Forms		
	equations that represents a	Different i offits		
	real-world situation			
	graphically and numerically			
	3. Students will explain what			
	the solution to a system of			
	linear equations means in the			
A DEI #5	4 Solve a system of linear	a 6.2.1 Passing on the Gift	Exit Slip 6.2.1	
A-KEI #5	equations using the	\circ 6.2.2 Solving Systems by the	Exit Sup 0.2.1	
A-REI #6	substitution method	Substitution Method	Exit Slip 6.2.2	
		• 6.2.3 More Practice with the	-	
	5. Explain what the solution to	Substitution Method	Journal Entry 1	
	a system of linear equations	• 6.2.4 Drag Racing	Journal Entry 2	
	real-world problem	Drag Racing Video	Journal Entry 2	
	r i i i i i i i i i i i i i i i i i i i	• Drag Racing Applet		
		\circ 6.2.5 Bleak-Even Analysis		
		Slope-Intercept Form		
		• 6.2.7 One for All		
A-REI #5	6. Use the elimination method to solve a system of	 6.3.1 Introduction to the Elimination Method 	Exit Slip 6.3.1	
	equations	 6.3.2 Exploring the Number of Solutions 	Journal Entry 1	
	7. Explain the algebraic	• 6.3.3 Applications of the	Journal Entry 2	
	properties upon which the	Elimination Method	$\mathbf{E}_{\mathbf{r}}$ it flip (2.2.)	
	emmation method is based	 6.3.4 Mechanics of the Elimination Method 	Exit Sup 0.3.2	
	8. Explain the relationship	• 6.3.5 Selecting an Algebraic		
	between the number of solutions to a system of	Method		
	equations and the			
	relationship between the			
	slopes and y-intercepts of the			
	equations within a system			
	9. Identify the characteristics of			
	systems of equations that			
	lend themselves to the			
	substitution and elimination methods			

Unit 6 Performance Task (Park) End of Unit Test			
		Unit 6 Performance Task (Park)	End of Unit Test

Suggested Resources and Texts: Heifereducation.org, dragtimes.com, uhaweb.hartford.edu/rdecker, thefutureschannel.com/hands-on_math/computer_problems.php

Suggested Technology: Graphing Calculators, Computers, Projectors

Unit 7: Scatter Plots and Trend Lines

Introduction and Established Goals: Unit 7 builds on the concepts of a function and patterns of change. Students work with interesting and significant relationships that are exponential in nature. Many of the contexts explored affect their daily lives.

Desired Outcome(s): When comparing an exponential model with a linear model, the question is not *if* the exponential model will generate very large or very small inputs, but rather *when*. With real data, sometimes deciding whether data is linear or non-linear is more complex than just looking at a graph, differences ($y_n - y_{n-1}$), or an r-value; it is important to examine differences that are approximately the same more carefully to see if there is a pattern of increasing or decreasing values that, because the pattern is exponential, soon begins to produce outputs of remarkable values.

CT/Common Core State Standard(s):

- N-RN 1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.
- N-RN 2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.
- A-SSE 1b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^n$ as the product of P and a factor not depending on P.
- A-SSE 3c. Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^t can be rewritten as $[1.15^{(1/12)}]^{(12t)} \approx 1.012^{(12t)}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
- F-IF 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
- \circ e. Graph exponential functions, showing intercepts and end behavior.
- F-IF 8b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^{t}$, $y = (0.97)^{t}$, $y = (1.01)^{12t}$, $y = (1.2)^{(t/10)}$, and classify them as representing exponential functions.
- F-BF 2. Write ... geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
- F-LE 1. Distinguish between situations that can be modeled with linear functions and with exponential functions.
 - Prove that exponential functions grow by equal factors over equal intervals.
 - Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

- F-LE 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
- F-LE 3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly.
- F-LE 5. Interpret the parameters in an exponential function in terms of a context.
- CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grade 9 text and topics.

Math Practice(s):

- MP1) Make sense of problems and persevere in solving them
- MP4) Model with mathematics
- MP6) Attend to precision

Essential Question(s):

- What characterizes exponential growth and decay?
- What are real world models of exponential growth and decay?
- What are the limitations of exponential growth models?
- How can one differentiate an exponential model from a linear model given a real world data set?

Key Terms/Concepts: Exponential Function, Exponential Growth, Exponential Decay, Growth Factor, Decay Factor, Per Cent rate of change, Doubling Time, Half Life, Compound Interest, Asymptote, Laws of Exponents

STANDARD	LEARNING OBJECTIVES (Content and Skill)	INSTRUCTIONAL STRATEGIES	ASSESMENT EVIDENCE
F-IF 7e	1. Distinguish between	• Fao.org/hunger/en	Exit Slip 7.1.1
F-BF 2	growth in tables or in graphs	Wfp.org/hunger/map Stopthehunger.com Youtube.com	Exit Slip 7.1.2
F-LE 1a	2. Recognize that	• 7.1.1 Is Population Growth Linear	Journal Entry 1
F-LE 3	nonlinear growth leads to average rates of	• 7.1.2 Is it a Good Deal?	Journal Entry 2
CCSS.ELA- LITERACY RST 9-	change that are not	 7.1.3 A Closer Look at World Population Data 	
10.4	3 Use a recursive feature	• 7.1.4 World Agriculture Production	
	of a graphing calculator to model exponential growth	 7.1.5 Population and Food Production 	

LEARNING PLAN

	4.	Recognize that exponential growth occurs when there is a constant multiplicative pattern among function values		
N-RN 1 N-RN 2 F-IF 7e F-LE 1 F-LE 3 CCSS.ELA- LITERACY.RST.9- 10.4	 5. 6. 7. 8. 9. 10. 	Recognize that whereas linear growth patterns can be modeled by y=mx+b, exponential growth patterns can be modeled by $y = ab^x$ Explore patterns with positive integer exponents to justify the rules: $a^m a^n = a^{m+n}, \frac{a^m}{a^n} =$ a^{m-n} , and $(a^m)^n =$ a^{mn} . Extend the meaning of exponents to include zero and negative integer exponents Extend the meaning of exponents to include rational exponents Contrast linear and exponential growth	 7.2.1 Exploring Growth Patterns 7.2.2 The Meaning of Integer Exponents 7.2.3 Exploring the Meaning of Rational Exponents 7.2.4 Roots and Exponents 7.2.5 Exploring an Exponential Function 7.2.6 How Many Grains? Mathforum.org King and Chess Story 	Exit Slip 7.2.1 Journal Entry 1 Exit Slip 7.2.2 Journal Entry 2
F LE-1 F LE-2 F LE-3 F LE-5 CCSS.ELA- LITERACY.RST.9- 10.4	11.12.13.	Describe the effects of the parameters a and b in the exponential function $f(x) = ab^x$ Distinguish between exponential growth and decay in real-world contexts Fit an exponential function to a set of data	 Whc.unesco.org/en/list/438 7.3.1 Building Walls 7.3.2 Exploring the Exponential Graph 7.3.3 Effects of Parameters 7.3.4 Modeling Exponential Growth and Decay Using Parameters 7.3.5 Growth and Decay Situations 7.3.6 Identifying Exponential Functions 	Journal Entry Exit Slip 7.3
F-LE 5	14.	collect data from an experiment, make a table and a graph, and	 7.4.1 Tossing M and Ms 7.4.2 Bouncing Balls 7.4.3 Facebook Users 	Exit Slip 7.4 Journal Entry

	1	.1		
CCSS.ELA-		then fit an exponential		
LITERACY.RST.9-		function to the data		
10.4				
	15	Paflact on the accuracy		
	15.	Kellect off the accuracy		
		of the exponential		
		model given the nature		
		of the experiments		
	16	<u>Circuit experiments</u>	The fate we also we also we	E-: (01: 7 5 1
A-SSE 1b	16.	Given a percent rate of	o Inefutureschannel.com	Exit Slip 7.5.1
		change students will be	Video	
A-SSE 3c		able to determine the	\circ 7.5.1 Percents and Percent	Journal Entry
		growth or decay factor	Change	
		growin of decay factor	Change	
F-IF 8b		and write an explicit	• 7.5.2 Percent Change and	Exit Slip 7.5.2
F-LE 1c		equation for an	Exponential Functions	
		exponential function	a 752 Demont Change	
EIE5		enponential failetion	0 7.5.5 Percent Change	
F-LE 5		~	Situations	
	17.	Given an exponential	o 7.5.4 Modeling Exponential	
CCSS.ELA-		function students will	Functions: What Is the	
LITERACY.RST.9-		be able to determine	P (Cl)	
10.4		the percent rate of	Percent Change?	
10.4			 7.5.5 Compound Interest 	
		change and the growth	\circ 7 5 6 Doubling Time and	
		or decay factor	Half Life	
			Hall-Life	
	18	Students will apply	• Rule of 72 Supplemental	
	10.	the income to a time of	Activities	
		their understanding of		
		exponential functions		
		to the computation of		
		compound interest		
DID1	10			F '(01' 7 (
F-LE I	19.	Represent climate data	\circ 7.6.1 The Mathematics of	Exit Slip 7.6
		with tables, graphs, and	Global Warming	
F-LE 1c		equations	 7.6.2 Countering Global 	Journal Entry
		*	Warming	
EIE?	20	Explore graphs of data		
F-LE 2	20.	Explore graphs of data	• Climatecrisis.com	
		and determine which	○ Takepart.com/an-	
F-LE 5		type of function (linear,	inconvenient-truth	
		exponential. or		
CCSS FLA-		niecewise) to use a	o Cozilow.org	
		piece wise) to use a		
LITERACY.RS1.9-		model		
10.4				
	21.	Interpret the parameters		
		of functions in terms of		
		contaut		
		context		
	22.	Use linear and		
		exponential models to		
		prodict future volves		
		predict future values		
			Unit / Performance Task (The	End of Unit Test
			Consequences of Global	
			Warming)	
			6/	

Suggested Resources and Texts: foa.org/hunger/en, wfp.org/hunger/map, stopthehunger.com, youtube.com, mathforum.org/sanders/geometry/GP11Fable.html, Square Tiles and Linked Cubes, Bags of M&Ms, Paper Plates and Paper Cups, Bouncing Balls, Yardsticks, Tape Measures, Masking Tape, climatecrisis.com, takepart.com/an-inconvenient-truth, co2now.com **Suggested Technology:** Graphing Calculators, Projector, Computer

Unit 8: Quadratic Functions and Equations

Introduction and Established Goals: Students will learn how quadratic functions and solving quadratic equations relate to real-world examples.

Desired Outcome(s): Quadratic functions can be used to model real world relationships and the key points in quadratic functions have meaning in the real-world context. Polynomials are closed under addition, subtraction, and multiplication. Dynamic software, graphic calculators, and other technology can be used to explore and deepen our understanding of mathematics.

CT/Common Core State Standard(s):

- 8EE 2. Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.
- A-SSE 3. a Factor a quadratic expression to reveal the zeros of the function it defines. b.
 Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
- A-REI 4. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x p)2 = q that has the same solutions. Derive the quadratic formula from this form. Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation.
- A-APR 1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
- A-CED 1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from ...quadratic functions ...
- A-CED 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- F-IF 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries.
- o F-IF 7a. Graph ... quadratic functions and show intercepts, maxima, and minima.
- F-IF 8a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
- F-BF 3. Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs.

Experiment with cases and illustrate an explanation of the effects on the graph using technology.

• CCSS.ELA-LITERACY.RST.9-10.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grade 9 text and topics.

Math Practice(s):

- MP4) Model with mathematics
- MP5) Use appropriate tools strategically

Essential Question(s):

- What can the zeros, intercepts, vertex, maximum, minimum and other features of a quadratic function tell you about real world relationships?
- How is the polynomial system analogous to the system of integers?
- How can technology support investigation and experimentation of the way that parameters effect functions?

Key Terms/Concepts: Algorithm, Binomial, Coefficient, Completing the Square, Constant Term, Decreasing, Delta, Delta-Delta, Expanded Form, Factored Form, First Differences, Increasing, Leading Coefficient, Line of Symmetry, Linear Term Opens Up, Monomial, Opens Down, Quadratic Formula, Quadratic Function, Quadratic Equation, Quadratic, Second Differences, Parabola, Parameter, Quadratic, Square Root Property, Standard Form, Trinomial, Vertex, Vertex Form, Vertex Formula, xintercepts, y-intercepts, Zero Product Property

STANDARD	LEARNING OBJECTIVES (Content and Skill)	INSTRUCTIONAL STRATEGIES	ASSESMENT EVIDENCE
A-CED 1 A-CED 2 F-IF4 CCSS.ELA- LITERACY.RST.9- 10.4	 Distinguish, given a table of values, between the nonlinear pattern of exponential and quadratic growth Make a scatter plot by hand or technology with appropriate scaling and labels and recognize a graph that could be modeled by a quadratic function Recognize that for nonlinear growth, the average rates of change will not be constant 	\circ 8.1.1 Quadratics in the Kitchen \circ 8.1.2 Modeling HIV Data \circ 8.1.3 Rolling Ball & CBR 2 \circ 8.1.3 Rolling Ball & CBR 2 \circ 8.1.4 Quadratic Functions by Table \circ 8.1.5 Social Security Trust Fund \circ 8.1.6 Exploring the Parameters of $y = ax^2 + bx + c$ \circ 8.1.7 Galileo in Dubai	Exit Slip 8.1.1 Journal Entry Exit Slip 8.1.2

LEARNING PLAN

	4. Recognize that for quadratic growth, the average rates of change exhibit linear growth or in other words, the second differences are constant		
F-IF 4	5. Find the vertex of a	• 8.2.1 Design a Solar Cooker	Exit Slip 8.2
F-IF 7a	quadratic function from its equation given an	• Falstad.com/ripple/ex-	Journal Entry 1
	equation in vertex form	• 8.2.2 Graphing Quadratic	Journal Entry 2
F-BF 3	of standard form	Functions in Vertex Form	
CCSS.ELA-	6. Model a real-world	• 8.2.3 Exploring Parameters with Geometer's Sketchpad	
LITERACY.RST.9-	situation by writing the	• 8.2.4 Modeling with	
10.4	function given the vertex	Quadratic Functions in	
	and one other point	• 8.2.5 Bouncing Ball	
	7. Transform a quadratic	• 8.2.6 Transforming	
	function in standard form	Quadratic Functions in Standard Form to Vertex	
	to a function in vertex $-h$	Form	
	form by finding $h = \frac{b}{2a}$	• Solar Cooker Video/Images	
	and $k = f\left(\frac{-b}{2a}\right)$		
	8. Graph a quadratic		
	function in vertex form		X 1 1 1
8-EE 2	9. Recognize the relationship between	o 8.3.1 Fenway Park o 8.3.2 The Square Root	Journal Entry 1
A-REI 4	squares and square roots	Property	Exit Slip 8.3.1
CCSS EL A	10 Pacamiza and	• 8.3.3 Solving Two Step	Evit Slip 8 3 2
LITERACY.RST.9-	distinguish quadratic	Root Property	Exit Slip 8.5.2
10.4	functions in standard	\circ 834 Multi-Step Equations	Loumal Entry 2
		0 0.5.1 Main Stop Equations	Journal Entry 2
	form and in vertex form	with Square Roots	Journal Entry 2
	form and in vertex form 11. Undo quadratic	 o 8.3.5 Finding x-intercepts of Parabolas 	Journal Entry 2
	form and in vertex form 11. Undo quadratic expressions to find solutions to acustions	 o 8.3.1 Finding Step Equations with Square Roots o 8.3.5 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic 	Journal Entry 2
	form and in vertex form 11. Undo quadratic expressions to find solutions to equations	 o 8.3.1 Finding Step Equations with Square Roots o 8.3.5 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic Equations in Standard Form 	Journal Entry 2
	form and in vertex form 11. Undo quadratic expressions to find solutions to equations 12. Solve equations of the	 o 8.3.5 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic Equations in Standard Form 	Journal Entry 2
	form and in vertex form 11. Undo quadratic expressions to find solutions to equations 12. Solve equations of the form $a(x - h)^2 + k =$ constant	 o 8.3.5 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic Equations in Standard Form 	Journal Entry 2
	 form and in vertex form 11. Undo quadratic expressions to find solutions to equations 12. Solve equations of the form a(x - h)² + k= constant 	 o 8.3.5 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic Equations in Standard Form 	Journal Entry 2
	 form and in vertex form 11. Undo quadratic expressions to find solutions to equations 12. Solve equations of the form a(x - h)² + k= constant 13. Find the x-intercepts of perception of the solutions form the solution of the solutions 	 o 8.3.5 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic Equations in Standard Form 	Journal Entry 2
	 form and in vertex form 11. Undo quadratic expressions to find solutions to equations 12. Solve equations of the form a(x - h)² + k= constant 13. Find the x-intercepts of parabolas given functions in vertex form. 	 o 8.3.5 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic Equations in Standard Form 	Journal Entry 2
	 form and in vertex form 11. Undo quadratic expressions to find solutions to equations 12. Solve equations of the form a(x - h)² + k= constant 13. Find the x-intercepts of parabolas given functions in vertex form. 	 o 8.3.5 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic Equations in Standard Form 	Mid Unit Test
A-APR 1	 form and in vertex form 11. Undo quadratic expressions to find solutions to equations 12. Solve equations of the form a(x - h)² + k= constant 13. Find the x-intercepts of parabolas given functions in vertex form. 14. Graph and find the vertex of quadratic functions in 	 o 8.3.1 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic Equations in Standard Form o 8.4.1 Functions in Factored Form 	Mid Unit Test Exit Slip 8.4.1
A-APR 1 F-IF 4	 form and in vertex form 11. Undo quadratic expressions to find solutions to equations 12. Solve equations of the form a(x - h)² + k= constant 13. Find the x-intercepts of parabolas given functions in vertex form. 14. Graph and find the vertex of quadratic functions in factored form 	 o 8.3.5 Finding x-intercepts of Parabolas o 8.3.6 Solving Quadratic Equations in Standard Form o 8.4.1 Functions in Factored Form o 8.4.2 Finding the Maximum 	Mid Unit Test Exit Slip 8.4.1 Journal Entry 1
A-APR 1 F-IF 4 F-IF 7a	 form and in vertex form 11. Undo quadratic expressions to find solutions to equations 12. Solve equations of the form a(x - h)² + k= constant 13. Find the x-intercepts of parabolas given functions in vertex form. 14. Graph and find the vertex of quadratic functions in factored form 15. Use the game product. 	 8.3.5 Finding x-intercepts of Parabolas 8.3.6 Solving Quadratic Equations in Standard Form 8.4.1 Functions in Factored Form 8.4.2 Finding the Maximum Profit 	Mid Unit Test Exit Slip 8.4.1 Journal Entry 1

F-BF 3 CCSS.ELA- LITERACY.RST.9- 10.4	 intercepts of a quadratic function in factored form 16. Multiply combinations of monomials, binomials, and trinomials 17. Convert quadratic functions in factored form to standard form 	 8.4.4 Writing Quadratic Equations in Factored Form 8.4.5 Multiplying Polynomials Algebra Tiles 8.4.6 Standard Form for Quadratic Functions 	Journal Entry 2
A-SSE 3a CCSS.ELA- LITERACY.RST.9- 10.4	 18. Factor quadratic trinomials in various forms 19. Check factorizations using multiplication 20. Convert quadratic functions in standard form to factored form 21. Solve a quadratic equation by factoring or determine that a quadratic equation cannot be solved in this way 	 8.5.1 Finding Common Monomial Factors Factoring methods video Algebra Tiles Wolfram alpha Calculatorsoup.com 8.5.2 Factoring Trinomials 8.5.3 Find Your Match Juggling Video 8.5.4 Solving Quadratic Equations by Factoring 8.5.5 Building Fences 	Exit Slips 8.5 Journal Entry 1 Journal Entry 2
A-REI 4	22. Solve a quadratic equation that cannot be	 8.6.1 Completing the Square 8.6.2 Proving the Quadratic 	Exit Slip 8.6
A-SSE 3b	factored by completing the square and by using	Formula8.6.3 Using the Quadratic	Journal Entry
F-IF 8a CCSS.ELA- LITERACY.RST.9- 10.4	the quadratic formula	Formula • 8.6.4 Golden Rectangles	
		Unit 8 Performance Task (Stopping Distance)	End of Unit Test

Suggested Resources and Texts: education.TI.com,

math.lsa.umich.edu/courses/105/m105_f05_h4.pdf, wolframalpha.com, Algebra Tiles PowerPoint, illuminations.nctm.org, library.thinkquest.org, phet.colorado.edu, video.pbs.org

Suggested Technology: Graphing Calculators, Computer Access